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ABSTRACT

h new field of multi-partlcle interferometry is

introduced using a nonlinear optical spontaneous

parametric down conversion (SPDC) of a photon

into more than two photons. The study of SPDC

using a realistic Hamiltonian in a multi-mode

shows that at least low conversion rate limit is

possible. The down converted field exhibits many

stronger nonclassical phenomena than the usual

two photon parametric down conversion.

Application of the multi-particle interferometry

to a recently proposed many particle Bell's

theorem on Binstein-Podolsky-Rosen problem is

given.

INTRODUCTION

A two photon spontaneous parametric down

conversion (SPDC) 1 has been known to be an

effective source of highly correlated photon

pairs that exhibit many interesting nonclassical

properties, such as squeezed states,

antibunching, violation of classical

inequalities, etc. Our study, which starts with a

realistic Hamiltonian not only shows that the

divergence problem 2'3, which occured in the usual

parametric approximation, does not occur when the

pump is quantized, but also shows that the phase

matching problem, in principle, doesn't prohibit

the phenomena to occur.

It is possible 4 to have the phenomenon at least

in the low conversion rate limit. Since we know

that quantum tnterferometers do not require a

high coversion rate (indeed we like to have only

one set of photons in the entire setup at any

time), we can introduce a multi-particle quantum

optical interferonetry in which one measures the

quantm correlation properties among more than

two particles. One can construct three-photon

coherent state interferoneters in the form of a

generalized momentvm-position interfer_etry, a

generalized form of a Franson-type position-time

interferonetry, and a generalized polarization

correlation experiments, and look for their

nonclassical behaviors.

I. CENERALIZED PARAMETRIC DOWN CONVERSION

Starting with an interaction Hami ltonian for

three photon SPDC in the parametric approximation

which allows multiple mode down conversion from

the pump with wavevector k o and frequency too:

H I = ydv _YY. K {&l&2&3 e-tA k'r*i_°t

+ Al*aZta3#e iA k'r-i{Oot}, (1)

we obtain the expressions for the time

+
development of the operators &, $ :

. • toot
Aka = -i{_k aka -i )." _K al+A2+e 1

• _(ko-k-kl-k2) (2a)

'* : i_k *& ka & ka +i _-"_K &l&2 sio_ot

• _(ko-k-kl-k2) (2b)

A major difference between Bqs. ( 2 ) and the

equivalent two photon case is that in this case

the 5 function at the end of gqs.(2) cannot

eliminate the summations (or integrals, for a

continuum) over k 1, k 2 unless we have a special

selection mechanism such as ideal phase matching,

or photon resonances, for the specific down

converted frequencies.

But in any case, the equations can be

solved and yield the same type of curves for the

photon number, although in non- idea 1 phase

matched cases, we have much smaller values. For

example, for the 3 photon degenerate case we

have
oe

N : 18K 2" (3N2+3N+2) , etc, (3)

Except for the two photon case, which has a well

known analytic solution N = sinh2Kt that diverges
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at infinity, it can be shown that in all higher

order cases the photon number diverges at a

finite time. On the other hand, if we quantize

the pump field, the interaction Hamiltonian HIQ

becomes

HIQ : fdv XX_X Kq{&l&2&3&o÷e "iAk'r

. al÷a2+g3+aoeiA k.r}, (4)

where KQ is a quantum pump equivalent to K in

parametric approximation.

From this we have a time development of

the down converted photon number for the three

photon degenerate SPDC:

2
N = 18KQ{(3N2t3N_2)No(t)-N3tSN÷2)}, (5)

where N0(t ) gives the expression for the depleted

pump beam and is related to the down converted

beam as <N0(t))=<N0(O)>-(N(t)>. The extra term

with a negative sign in gq.(S) will slow down the

change of the elope of the curve when the pump

depletion becomes significant. Notice that the

expression in the quantum pomp reduces to the

parametric approximation for N0(t)>TN. The photon

number will eventually oscillate greatly for

large Kt, This is true even in the case when we

don't have an ideal phase matching.

II. NULTIPARTICLg INTgRFERONETRY

Two fundamental relations for a multi-photon

spontaneous parametric down conversion, i.e.

k 0 = kirk2+ ''' #k n, (6)

_0 = °I+_2 + ''' +_n' (7)

along with the facts that the pump beam with k o

and _o is a coherent one and that the n-photon

down converted state is represented by the

product of the individual photon states, tell us

that each individual down converted photon

doesn't have a definite phase, while the total

system carries the phase information. This n-

photon correlation property opens a new field of

multi-photon interferometry in which one measures

the joint detection probability of n photons.

Our scheme for multi-photon interferometry

starts with forming a quantum mechanically

entangled state.

[_> : 2 "1/2 { [+l÷2'''÷n T t

• i(([)l+_2+''+@n) I-l-2'''-n T }, (8)

where |÷iT and _t) refer to the two different

possible states of photon i and _i represents

the phase difference between those two states. It

is a matter of indifference whether |+i T and I-iT

states are switched for any particle(s) t.

Now if our measurement H on the system

involves off-diagonal matrix elements, i.e.. a

mixing of the two possible states, then the

quantum mechanical expectation value <_J H J_

for the measurement will generally contain terms

that oscillate einusoidally with ¢_l÷¢_2t'''+_n.

These off diagonal elements or the mixing of the

states may be achieved by making use of beam

splitters or a polarization analyzer whose axis

lies in between the two orthogonal polarization

axes. Ne stay with three particle systems

because we would have an extremely small chance

of getting a right set of correlated photons in

higher order.

( 1 ) Generalized Horns- Shimony- Ze i 1 infer 5

interferometer: This two-photon momenttm-

position interferometer was implemented by Rarity

and Tabeter g. Recently, a three-particle version

of the experiment was proposed by Greenberger

et.al 7 to test against a family of local realism.

Their gedanken three particle setup can be

realized through the three photon SPDC which we

described in the previous section. One would have

an expectation value for the three photon joint

detection that oscillates sinusoidal ly with

¢)i+_2+¢)3.

(2) Generalized Frenson Interferometer:

T MSl Axl
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I i

 A×3 f

D3

Fig. 1 Three arm Franeon interferometer
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Franson 8 devised a two particle gedanken

interferonetor that uses the interference between

two possible states each of which belongs to a

different emission time.

The experiment was implemented by Ou et al. 9 and

by Kwiat et al. 10 A generalized three-photon

Franson interferometry may use the Ou et al.-type

of setup with three Michelson interferometers as

in Fig.l. The same analysis should go through as

in the two photon case and the expectation value

for the coincidence counting rate of three

photons will exhibit a einusoidal oscillation

that depends upon the accumulated optical path

differences between two possible paths.

(3) Polarization Interferoneter: Finally, we

construct a third type of entangled state formed

by two orthogonal polarizations of photons for a

three photon polarization interferoneter. Suppose

all three down converted photons are x-polarized.

(one can in principle enforce this by placing x-

filters after the apertures) In one set of paths

(primed ones) we place half wave plates and in

the other set of paths (unprimed ones) we place

compensators and the variable phase shifters _i'

Then we combine the beams on the beam splitters

so that the polarization states may be mixed

before they are registered by two channel linear

polarization analyzers. If we count a detection

of an x-polarized photon as ÷1 and a y-polarized

photon as -1, using two channel analyzers, then

we would have a three-photon joint detection

probability: 11

e(_l ¢]_2 cjD3 ) : _3 cos(¢:_1+_2+_3) ' (9)

III. BELL'S THEOREM AND NORE

In general, the many particle correlated system

we discussed here is not a mere generalization of

two particle correlated system. It exhibits much

stronger nonclassical effects than the usual two

particle correlated system through its additional

degree of freedom. Some found a stronger

squeezing 3 and a sore prominent _ntibunching 12.

We found a stronger violation of classical

generalized Cauchy-Schwartz inequality by a

factor of (n-1)/n in a simple higher order system

which can be easily generalized to other systess.

We also found that in a Franson-type tlme-energy

interfer_meter classical stochastic

electrodynanics fails rapidly to reproduce

quantum mechanical result in visibility by a

factor of 1/2 for each additional order.

Finally, we saw the dramatic breakdown

of local realism in many particle system due to

Creenberger at.el (CHZ) 7. It has shown that any

local theories that is based on EPR type realism

faces contradiction as it tries to imitate

quantum nechanical results in a many particle

correlated system. This theorem can be

implemented by multiphoton interferosetries which

we discribed in Section II. Heroin 13 also has

shown that the violation of Bell type inequality

in a many particle system increases

exponentially as it goes to a higher order. This

is just an another example of a strong violation

of classical limits by a many particle system

through its additional quantum degree of freedom.
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